
4.6 Bandwidth-Efficient Modulations

4.74. We are now going to define a quantity called the “bandwidth” of a
signal. Unfortunately, in practice, there isn’t just one definition of band-
width.

Definition 4.75. The bandwidth (BW) of a signal is usually calculated
from the differences between two frequencies (called the bandwidth limits).
Let’s consider the following definitions of bandwidth for real-valued signals
[3, p 173]

(a) Absolute bandwidth: Use the highest frequency and the lowest fre-
quency in the positive-f part of the signal’s nonzero magnitude spec-
trum.

• This uses the frequency range where 100% of the energy is confined.

• We can speak of absolute bandwidth if we have ideal filters and
unlimited time signals.

(b) 3-dB bandwidth (half-power bandwidth): Use the frequencies
where the signal power starts to decrease by 3 dB (1/2).

• The magnitude is reduced by a factor of 1/
√

2.

(c) Null-to-null bandwidth: Use the signal spectrum’s first set of zero
crossings.

(d) Occupied bandwidth: Consider the frequency range in which X%
(for example, 99%) of the energy is contained in the signal’s bandwidth.

(e) Relative power spectrum bandwidth: the level of power outside
the bandwidth limits is reduced to some value relative to its maximum
level.

• Usually specified in negative decibels (dB).

• For example, consider a 200-kHz-BW broadcast signal with a max-
imum carrier power of 1000 watts and relative power spectrum
bandwidth of -40 dB (i.e., 1/10,000). We would expect the sta-
tion’s power emission to not exceed 0.1 W outside of fc± 100 kHz.
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Example 4.76. Message bandwidth and the transmitted signal bandwidth
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Figure 29: SSB spectra from suppressing one DSB sideband.

4.77. BW Inefficiency in DSB-SC system: Recall that for real-valued base-
band signal m(t), the conjugate symmetry property from 2.30 says that

M(−f) = (M(f))∗ .

The DSB spectrum has two sidebands: the upper sideband (USB) and the
lower sideband (LSB), each containing complete information about the base-
band signal m(t). As a result, DSB signals occupy twice the bandwidth
required for the baseband.

4.78. Rough Approximation: If g1(t) and g2(t) have bandwidths B1 and
B2 Hz, respectively, the bandwidth of g1(t)g2(t) is B1 +B2 Hz.

This result follows from the application of the width property18 of con-
volution19 to the convolution-in-frequency property.

Consequently, if the bandwidth of g(t) is B Hz, then the bandwidth of
g2(t) is 2B Hz, and the bandwidth of gn(t) is nB Hz. We mentioned this
property in 2.42.

18This property states that the width of x ∗ y is the sum of the widths of x and y.
19The width property of convolution does not hold in some pathological cases. See [5, p 98].
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4.79. To improve the spectral efficiency of amplitude modulation, there
exist two basic schemes to either utilize or remove the spectral redundancy:

(a) Single-sideband (SSB) modulation, which removes either the LSB or
the USB so that for one message signal m(t), there is only a bandwidth
of B Hz.

(b) Quadrature amplitude modulation (QAM), which utilizes spectral re-
dundancy by sending two messages over the same bandwidth of 2B
Hz.

4.7 Single-Sideband Modulation

4.80. Transmitting both upper and lower sidebands of DSB is redundant.
Transmission bandwidth can be cut in half if one sideband is suppressed
along with the carrier.

Definition 4.81. Conceptually, in single-sideband (SSB) modulation,
a sideband filter suppresses one sideband before transmission. [3, p 185–186]

(a) If the filter removes the lower sideband, the output spectrum consists
of the upper sideband (USB) alone. Mathematically, the time domain
representation of this SSB signal is

xUSB(t) = m(t)
√

2 cos(2πfct)−mh(t)
√

2 sin(2πfct). (55)

where mh(t) is the Hilbert transform of the message:

mh(t) = H{m(t)} =
1

π

∫ ∞
−∞

m(τ)

t− τ
dτ = m(t) ∗ 1

πt
. (56)

(b) If the filter removes the upper sideband, the output spectrum consists
of the lower sideband (LSB) alone. Mathematically, the time domain
representation of this SSB signal is

xLSB(t) = m(t)
√

2 cos(2πfct) +mh(t)
√

2 sin(2πfct). (57)

Derivation of the time-domain representation is given in Section 4.9. More
discussion on SSB can be found in [3, Sec 4.4], [14, Section 3.1.3] and [5,
Section 4.5].
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4.8 Quadrature Amplitude Modulation (QAM)

Definition 4.82. In quadrature amplitude modulation (QAM ) or
quadrature multiplexing , two baseband real-valued signals m1(t) and
m2(t) are transmitted simultaneously via the corresponding QAM signal:

xQAM (t) = m1 (t)
√

2 cos (2πfct) +m2 (t)
√

2 sin (2πfct) .
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Figure 30: QAM Scheme

• QAM operates by transmitting two DSB signals via carriers of the same
frequency but in phase quadrature.

• Both modulated signals simultaneously occupy the same frequency
band.

• The “cos” (upper) channel is also known as the in-phase (I ) channel
and the “sin” (lower) channel is the quadrature (Q) channel.

4.83. Demodulation : Under the usual assumption (B < fc), the two
baseband signals can be separated at the receiver by synchronous detection:

LPF
{
xQAM (t)

√
2 cos (2πfct)

}
= m1 (t) (58)

LPF
{
xQAM (t)

√
2 sin (2πfct)

}
= m2 (t) (59)
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To see (58), note that

v1 (t) = xQAM (t)
√

2 cos (2πfct)

=
(
m1 (t)

√
2 cos (2πfct) +m2 (t)

√
2 sin (2πfct)

)√
2 cos (2πfct)

= m1 (t) 2cos2 (2πfct) +m2 (t) 2 sin (2πfct) cos (2πfct)

= m1 (t) (1 + cos (2π (2fc) t)) +m2 (t) sin (2π (2fc) t)

= m1 (t) +m1 (t) cos (2π (2fc) t) +m2 (t) cos (2π (2fc) t− 90◦)

• Observe that m1(t) and m2(t) can be separately demodulated.

Example 4.84. (1)
√

2 cos (2πfct) + (1)
√

2 sin (2πfct)

Example 4.85. 3
√

2 cos (2πfct) + 4
√

2 sin (2πfct)

4.86. Suppose, during a time interval, the messages m1(t) and m2(t) are
constant. Consider the signal m1

√
2 cos (2πfct) +m2

√
2 sin (2πfct)

4.87. Sinusoidal form (envelope-and-phase description [3, p. 165]):

xQAM (t) =
√

2E(t) cos(2πfct+ φ(t)),

where

envelope: E(t) = |m1(t)− jm2(t)| =
√
m2

1(t) +m2
2(t)

phase: φ(t) = ∠ (m1(t)− jm2(t))
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Example 4.88. In a QAM system, the transmitted signal is of the form

xQAM (t) = m1 (t)
√

2 cos (2πfct) +m2 (t)
√

2 sin (2πfct) .

Here, we want to express xQAM(t) in the form

xQAM (t) =
√

2E(t) cos(2πfct+ φ(t)),

where E(t) ≥ 0 and φ(t) ∈ (−180◦, 180◦].
Consider m1(t) and m2(t) plotted in the figure below. Draw the corre-

sponding E(t) and φ(t).
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4.89. m1

√
2 cos (2πfct) +m2

√
2 sin (2πfct)
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4.90. Complex form:

xQAM (t) =
√

2Re
{

(m(t)) ej2πfct
}

where20 m(t) = m1(t)− jm2(t).

• We refer to m(t) as the complex envelope (or complex baseband
signal) and the signals m1(t) and m2(t) are known as the in-phase
and quadrature(-phase) components of xQAM (t).

• The term “quadrature component” refers to the fact that it is in phase
quadrature (π/2 out of phase) with respect to the in-phase component.

• Key equation:

LPF


(

Re
{
m (t)×

√
2ej2πfct

})
︸ ︷︷ ︸

xQAM(t)

×
(√

2e−j2πfct
) = m (t) .

4.91. Three equivalent ways of saying exactly the same thing:

(a) the complex-valued envelope m(t) complex-modulates the complex car-
rier ej2πfct,

• So, now you can understand what we mean when we say that a
complex-valued signal is transmitted.

(b) the real-valued amplitude E(t) and phase φ(t) real-modulate the am-
plitude and phase of the real carrier cos(2πfct),

(c) the in-phase signal m1(t) and quadrature signal m2(t) real-modulate
the real in-phase carrier cos(2πfct) and the real quadrature carrier
sin(2πfct).

20If we use − sin(2πfct) instead of sin(2πfct) for m2(t) to modulate,

xQAM (t) = m1 (t)
√

2 cos (2πfct)−m2 (t)
√

2 sin (2πfct)

=
√

2 Re
{
m (t) ej2πfct

}
where

m(t) = m1(t) + jm2(t).
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